研究方向2

研究方向2:基于人工结构的声场调控及器件


(1)基于人工结构的高频超声透镜探究

基于微纳梯度材料、微纳声栅、回波成像、高次谐波激发等,设计并制备声学超分辨透镜等功能器件,为超声诊断治疗和生物医学超声工程提供新原理。

Loss Compensation and Superresolution in Metamaterials with Excitations at Complex Frequencies. Phys. Rev. X 2023,13, 041024.

Decorated bacteria-cellulose ultrasonic metasurface. Nat. Commun. 2023,14, 5319.

Super-resolution acoustic image montage via a biaxial metamaterial lens. Sci. Bull. 2020, 65(12), 1022-1029.

Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nat. Commun. 2019, 10, 3411.

Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 2018, 9(1), 1632.

Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat. Commun. 2016, 7, 11731.


(2) 基于微纳人工结构的声场精细操控

基于仿生微纳人工结构、硅基微纳人工结构等,研制多功能超薄声学器件,实现高频超声精细调控,用于超声通信和多尺度生物医学相关探索。

Generating Multistructured Ultrasound via Bioinspired Metaskin Patterning for Low-Threshold and Contactless Control of Living Organisms. Adv. Funct. Mater. 2022, 32, 2203109.

An Acoustic Meta‐Skin Insulator. Adv. Mater. 2020, 32(37), 2002251.

Hollow‐Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft fiber/Rigid Bead Networks. Adv. Funct. Mater. 2018, 1801127.